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Statistical Characterization of Matching-Critical Circuits 

 
 Most data converters depend upon the matching of some critical components with 

higher resolution data converters invariably requiring more stringent matching 

requirements.  Though calibration is often used to reduce matching requirements, 

matching is still important in many data converters.   Invariably a statistical analysis or 

statistical simulations are required to accurately predict the performance of matching-

critical circuits. 

 In this experiment, matching requirements in R-2R networks will be considered 

and experimental validation will be based upon using discrete components.  The same 

concepts are applicable to integrated components but discrete components will be used to 

facilitate experimental measurements early in the course. 

The R-2R Network 
 What may appear to be two variants of a 5-bit R-2R network are shown in Fig.1.  

(These are actually identical structures, only the labeling of the components has 

changed). Though only depicted as a 5-bit network, the resolution can be increased by 

including additional bit slices denoted in the tan shaded areas.  One of the attractive 

properties of the R-2R network is that the number of elements increases linearly with the 

number of bits of resolution. 
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Fig. 1 R-2R Networks 
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 The R-2R networks are characterized with resistors in the shunt portion of a bit-

slice being double the resistance value of resistors in the series portion of the bit-slice.   

The R-2R networks are terminated on the right with a single resistor equal in value to the 

shunt resistors in the bit-slice.   

 There are several variants in how the R-2R network is used in a data converter.  

One way to form a DAC is to create a weighted sum of the tap voltages designated as V0, 

V1,…V4 in the 5-bit DAC.  The weights are either 0 or 1.  Switches that connect these tap 

voltages to the summer and the summer needed to complete the DAC are not shown in 

the figure.  Of course, the overall performance of such a DAC would depend on both the 

performance of the R-2R network and the performance of the circuit that creates the 

weighted sum. 

 A unit resistor is often used to form an R-2R network.   If a unit resistor of value 

R is used, the circuits of Fig. 1 represent two ways to create the R-2R network with a unit 

resistor.  One is termed the Series-R and the other the Parallel-R configuration.  In the 

Series-R configuration, two unit resistors are placed in series to realize the shunt elements 

in the bit-slice.  In the Parallel-R configuration, two unit resistors are placed in parallel to 

realize the series elements in the bit-slice.  

 A second variant of using a R-2R network to create a DAC is shown in Fig. 2 

using the Series R  structure of Fig. 1.  Of course, the Parallel R structure could be used 

here as well.  In this structure, each of the “2R” resistors is connected to either VREF or 

ground depending upon the Boolean input <b3  b2  b1 b0>.  This structure eliminates the 

need of a summing network but introduces switch impedances in the R-2R structure itself 

which, if not ideal, will affect performance. 
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Fig. 2 R-2R DAC Using Switched Excitation 

 

 

 In this experiment, we will attempt to answer the following two questions: 

 

Question 1: How does the performance of an R-2R DAC depend upon the statistical 

variation of the components 

 

Question 2:  For a given total area, will the Series-R or the Parallel-R structure provide a 

higher yield if the only yield loss is due to random variations in the resistor values? 
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The following question is also of interest but will not be addressed at this time to limit the 

scope of this experiment. 

 

Question 3:  If the area is allocated so that the yield of a Series-R and a Parallel-R 

structure is the same, what increase in area is required if the non-optimal implementation 

is used instead of the optimal area implementation. 

 

Before addressing these questions, a statistical model of the resistors is needed. 

 

Characterization of Resistors  
 

Resistance Measurement 

 Measure the resistance value of the 25 resistors that were used in the DAC in 

the previous part of the experiment using the Keysight 34470A Multimeter.  When 

making these measurements, place all 25 resistors on a protoboard and number these 

resistors R1 through R30. Keep track of the numbering of these resistors and the 

corresponding value you measured for each resistor throughout the remainder of this 

experiment. A convenient way to make this measurement might be to place the resistors 

in the protoboard as depicted below.   

 

R1 R25
 

 

 

From these measurements determine the mean, the standard deviation and plot the 

distribution of the resistors.  Comment on what you observe from these measurements. 

 

Measurement Accuracy 

 Determine how accurate the measurements you made are. Specify the 

accuracy that you think you have obtained in percent, in parts per million (PPM), and in 
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terms of the number of bits. The accuracy in PPM relates to the accuracy in percent by 

XPPM = 104X  where X is the accuracy in percent. The definition of the accuracy in “bits” 

is based upon the relationship 

n

1 X
=

1002
    (1) 

where X is the accuracy in % and n is the number of bits. To save you the calculation, the 

relationship between n and X is given explicitly as 

10

10

2-log X
n = 

log 2
   (2) 

Thus, 1% accuracy corresponds to about 6.5 bits and 10000 PPM, 0.1% accuracy to about 

10 bits and 1000 PPM, .01% accuracy to about 13 bits and 100 PPM and .001% accuracy 

to a little better than 16 bits and 10 PPM. 

 When making this determination, consider both the absolute and relative accuracy 

you think you have achieved with your measurements. There are several factors that 

affect the accuracy of your measurement. These include the accuracy of the test 

equipment, the temperature at which the device was measured, and the effects of any 

contact, lead, and circuit board resistance. For your information, the datasheet for the  

Keysight 34470A is linked on the class WEB site adjacent to this laboratory experiment. 

Be quantitative in your assessment of the accuracy you think you have obtained.  

 

Temperature Coefficient 

 Determine the temperature coefficient in PPM/ºC for the resistors (measurement 

on a single resistor should be adequate). From this measurement, how stable must the 

temperature of the resistor be to maintain the accuracy you determined in the previous 

part of this experiment?   The oven in the laboratory should be useful for measuring the 

temperature coefficient. 

 

Component Drift 

 Monitor the value of one of your resistors for a period of 10 minutes taking 

measurements approximately every 30 seconds. How does this value compare to what 

you obtained in the previous measurement.  Are the changes, if any, consistent with the 

accuracy you determined in the measurements? 

 

Contact Resistance 

Contact resistance is a major problem in accurately measuring the value of a resistor. 

Contact resistance is associated with the resistance of the contacts to the device under test 

or, in an IC, due to the contacts or vias that are needed to make a connection to the 

resistive region. In this experiment the contact resistance is relatively small compared to 

the resistors you are measuring but in integrated circuits the contact resistances can be 

several percent or more of the total resistance. Unfortunately the contact resistance is 
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often highly variable. Circuits are often designed to be insensitive to contact resistance 

and the techniques used to make a circuit insensitive to contact resistance are the same as 

are used to make contact-insensitive measurements of resistors in the laboratory. This is 

based upon what are often termed 4-point measurements (alternatively termed force and 

sense or Kelvin sensing). A 4-point measurement circuit is shown below. In this circuit a 

current is forced through the resistor and the voltage 
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VMEASITEST

 
is measured across the resistor terminals. In contrast to the two-point measurements 

discussed previously, there are 4 contact resistances present in this circuit designated as 

RC1 – RC4. However. Since no current flows through the contacts connecting the 

voltmeter, none of the contact resistances affect the measured resistance. 

 

 Develop a method for measuring the contact resistance associated with inserting 

components into the protoboards used in the laboratory.  Measure the contact resistance 

associated with the protoboards. 

  

4-Bit DAC Design 
  Build a 4-bit DAC on a protoboard using the R-2R DAC architecture of Fig. 2 

and the resistors you measured previously.  This figure is repeated in Fig. 3.   Use wires 

for the switches.  Use resistors R1 and R2 for the left-most “2R resistor”, use R3 for the 

left-most series resistor, use R4 and R5 for the next “2R” resistor etc. as indicated by the 

resistor numberings in Fig. 3.   
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Fig. 3   Implementation of R-2R DAC 
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Measure the transfer characteristics of the DAC and determine the INL and DNL  

of this structure (use the standard end-point fit line to determine the INL).  Compare the 

measured INL with that you obtain with a Spectre simulation using the measured values 

for R1-R13.   Neglect contact resistances in this simulation.  Determine the ENOB of your 

DAC (use the INL ENOB definition).   

In Excel, sort the value of the resistors R1-R13 from the largest to the smallest.  

Designate these as R1S-R13S.  After sorting, replace R1 in your DAC with R6S, Replace R2 

in your DAC with R8S, Replace R3 in your DAC with R7S, Replace R4 in your DAC with 

R5S and Replace R5 in your DAC with R9S.  By doing these replacements by doing a 

sequence of interchanges, you will still have a complete DAC.   Measure the transfer 

characteristics of the modified DAC and determine the INL and DNL of this structure 

and determine the ENOB of your DAC (use the INL ENOB definition).  Compare with 

what was obtained using the same 13 resistors that were randomly selected to form the 

DAC.  

There are different clever strategies for inter-changing resistors in a circuit and if 

interchanging matching-critical components improves performance, this becomes a 

calibration scheme that can compensate for undesired mismatch effects. 

 

For reference purposes, the ideal transfer characteristics and the transfer 

characteristics of a nonideal DAC are depicted below. 
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Transfer Characteristics of Actual DAC 

 

Series R or Parallel R Structures  
 

 Determine whether the Series-R and Parallel-R implementation of a 4-bit DAC 

has better performance for a given total area (that is the total area is the same).   At this 

point, make this determination by computer simulation.  Model your devices in this 

simulation based upon the Pelgrom matching parameter, Aρ .  Since we do not have the 

Pelgrom parameter for the resistors we are using in this experiment, use the measured 

standard deviation from the 25 resistors to obtain an estimate of the  Pelgrom matching 

parameter.  Assume the normalized standard deviation is given by the expression  

ran

nom

R

R R

A

A


 =  . 

where the area of the resistor is AR .  Note that the number of resistors in the Series-R and 

the Parallel-R implementations is not the same so for making area comparisons, this 

difference should be taken into account. Since these resistors are discrete thin-film 

resistors, the actual area is not known but correspondingly the value for Aρ that you will 

extract from measurements will depend upon the area of your test devices.   For 

convenience, assume the area of your test devices is AR=100u2 (this assumption is not 

necessary but is used strictly for convenience). 

  

Test Environment Validation 
 

When testing data converters, it is general practice to expect the accuracy of the 

test equipment to be about a factor of 10 (i.e. approximately 3-bits) better than the 

required accuracy of the device that is being tested. The Keysight 34470A is termed a 7 

½ digit multimeter where the factor of “7.5” refers to decimal digits, not binary digits. 
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a) If it truly has 7.5 digit performance, what would be the performance of the multimeter 

in binary bits? 

 

b) Actually the ½ digit does not refer to a full half of a decimal digit but rather to the 

ability to have either a 0 or a 1 in the MSB decimal column. With this understanding, 

what is the number of binary bits of resolution for the multimeter if the number of 

decimal digits truly reflects the performance?  

 

c) Based upon the specifications of the multimeter, how many binary digits of 

performance does this device really provide when the input is a full-scale voltage? 

 

d) If the Keysight 34470A is used to test the pseudo-static linearity performance of data 

converters, how many bit converters can it test if a) VREF=4V and b) if VREF=1V. 
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Appendix 

Derivation of Standard Deviation of Simple Circuit 
 Since a statistical analysis is required as a part of this experiment, a simple circuit 

will be considered in this Appendix that may serve as a refresher on statistical analysis. 

Consider the simple two-transistor inverter shown in Fig. A1.  
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Fig. A1 Voltage Divider Circuit 

 The resistors R1 and R2 are assumed to have a nominal part and a random part and thus 

can be expressed as 

 
= +

= +

1 1 1

2 2 2

N R

N R

R R R

R R R       (A1) 

 

In what follows, the standard deviation of the attenuation factor will be derived under two 

separate assumptions.  One assumption is that the resistors are made with discrete 

components and the other assumption is that they are thin-film integrated components 

coming from the same thin-film layer.  For the integrated structures, it will be assumed 

that the random part of the resistance is due totally to local random variations (i.e. 

gradient effects will be assumed to be absent either through a process with very small 

gradients or by the use of common-centroid layouts to cancel gradient effects).   In both 

cases, it will be assumed that the random part of the resistors are uncorrelated. 

 

 The attenuation factor can be expressed as 
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+
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Substituting from (A1) we obtain 

+
=

+ + +

0 2 2
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V R R R R  

This can be rewritten after some routine manipulations as 

+

= •
+

+ +
+ +

2
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1
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Unfortunately, this is a nonlinear function of the random variables R1R and R2R.  But 

since the random parts are small relative to the nominal parts of the resistors, the term 

+ +
+ +

1 2

1 2 1 2

1

1 R R

N N N N

R R

R R R R

 

Can be expanded in a Taylor’s series truncated after first-order terms to obtain 

 

  
= • + − −  

+ + +  

0 2 2 1 2

1 2 2 1 2 1 2

1 1N R R R

IN N N N N N N N

V R R R R

V R R R R R R R  

Neglecting product terms of two random variables which should be very small, after 

some routine manipulations we obtain 

 

 
= • + − − 

+ + + 
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This can be manipulated to obtain 

 
= • − + 

+ + + 

0 2 1 1 1 2

1 2 1 2 1 1 2 2

1N N R N R

IN N N N N N N N N

V R R R R R
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This is now the weighted sum of two uncorrelated random variables so it follows that the 

variance is given by the expression 

 

  
    
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Equation (A2) applies for either discrete or integrated resistors. 

 

If the resistors are integrated, it follows that 
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where Aρ is the Pelgom matching parameter and AR1 and AR2 are the areas of resistors R1 

and R2 respectively.  Substituting back into (A2) we obtain 


     

= +     
+ +     
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In the special case where R1N=R2N, this reduces to 


 =

0

1

2
IN

V

V T

A

A  

where AT is the total resistor area. 
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With discrete resistors, if  they are the are the same type of resistors and R1N=R2N, it 

follows directly from (A1) that 

 

 
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Statistical Analysis with Sensitivity Functions 
 The previous statistical analysis was an ad hoc approach but was presented to be 

intuitive.  It was also quite tedious and becomes more tedious for more intricate nonlinear 

functions of random variables.  A much more systematic approach that is particularly 

useful for linearizing nonlinear random functions is based upon a standard sensitivity 

analysis.  The approach will provide the same results, often with considerably less effort.  

The sensitivity-based statistical analysis will now be formalized. 

 Assume Y is a function of n uncorrelated random variables {x1,x2,…xn} where 

the random variables themselves can be expressed as 

 
i iN iRx x x= +  

where xiN is the nominal part of xi and xiR is the random part of xi.  For short-hand 

notation, denote X, XR, and XN as the vectors 

 

11 1
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... ......
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n nRnN

xx x

x x x
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x xx

    
    
    = = =
    
    

    

 

This function Y  can be expressed as 

 ( )1 2, ,...R R nRY f x x x=  

Expanding Y in a power series and truncating after first-order terms we obtain 

 
1 0R

n
i

N iR

i i iR X

xf
Y Y x

x x= =


 +

 
  

Note that Y is now a linear sum of uncorrelated random variables. 

But for all i,  

1i

iR

x

x


=


 

Thus 

1
i N

n

N iR

i i X X

f
Y Y x

x= =


 +


  

This can be rewritten as 

1
i N

i N

n
iN iR

N X X
i i iNX X

x xf
Y Y f

f x x=
= =


 +


  

But the argument in the summation is recognized as the standard sensitivity function, thus 
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1
i

i N

n
f iR

N N x
X X

i iN

x
Y Y Y S

x=
=

 +   

The variance of Y can thus  be expressed as 

( )
2

2 2 2

1
i iR

i N

iN

n
f

Y N x x
X X

i x

Y S 
=

=

   

This is the key result. 

 

Now, we will reconsider the previous simple attenuator example 
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The two sensitivity functions are  
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Thus, when evaluated at Xi=XN, we obtain 
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or equivalently as 

 

( ) 1 2

1 2

2 2 2

R R

N N

Y x x
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  
   

 +   
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Note this is the same as (A1). 


